
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000

COMODI: COMPONENT WIRING IN A FRAMEWORK FOR

SCIENTIFIC COMPUTING

ZSOLT I. LÁZÁR AND BAZIL PÂRV

Abstract. We present several alternatives for wiring atomic components,
namely functions, within the COMODI framework [1]. The benefits and
drawbacks of the different solutions are analyzed in the light of a few major
guidelines that are set forth for COMODI. A mixture of pipe&filter and
repository type of architectures is found to satisfy best the requirements for
scientific computing. The role of connector components are also discussed.

To the editor:
Abbreviated title: COMODI Component Wiring

1. Introduction

In [2], a few guidelines have been established for the possible wiring mechanisms.
According to this paper the wiring should

• constitute a low overhead in terms of execution time
• require little or no glue-code writing from the developer
• not require such changes in the implementation or interface of compo-

nents that makes them unusable outside the context of the framework

Even though the above requirements sound restrictive the forthcoming sections
will show that it is possible to design such architectures. Let us first define the
problem.

Received by the editors: 02.09.2004.
2000 Mathematics Subject Classification. 68U99, 68N99.
1998 CR Categories and Descriptors. D.2.12 [Software Engineering]: Interoperabil-

ity – Interface definition languages; D.2.11 [Software Engineering]: Software Architectures –
Languages, Patterns; D.2.6 [Software Engineering]: Programming Environments – Graphical

environments, Integrated environments, Interactive environments, Programmer workbench; G.4
[Mathematics and Computing]: Mathematical Software – User interfaces; J.2 [Computer

Applications]: Physical Sciences and Engineering – Aerospace, Archaeology, Astronomy, Chem-

istry, Earth and atmospheric sciences, Electronics, Engineering, Mathematics and statistics,

Physics .
NWO.

1

2 ZSOLT I. LÁZÁR AND BAZIL PÂRV

2. Calls & connectors

As described in [2] and ch. 8 of [4], components can be considered at different
levels of granularity. For the points to be made in this paper, we shall distinguish
between physical and logical components. By the former we mean units of de-
ployment, namely native library files, Java class files, etc. In view of the low-level
languages used in high-performance computing, this is almost synonymous with
units of compilation. Logical components are viewed from the perspective of the
computational project assembled by the user. A project is a graph of intercon-
nected components, as shown in Figure 1). Following the recommendations from
[2], we shall work at the lowest level of granularity, i.e. the atomic components
will consist in regular functions. Within the context of this work we shall use
the words “component” and “function” interchangeably. Connection means data
flow via function interfaces from the output of one component to the input of
another. We can distinguish between horizontal and vertical communication. The
former, e.g. 1.1 - 2.1.2, is the direct representation of the pull model for module
communication. It consists in a function calling another, which returns a result
to the former. This is basically the only model for communication in languages
such as C or Fortran. In terms of connection architectures, it belongs to a client-
server setup. On the other hand, horizontal calls imply the piping of an output
into the input ports of another component. This pipe&filter architecture, and
implicitely the push model, is not directly supported by low level languages. It is
the representation of equivalent vertical calls at a high level of abstraction.

Level 1

Level 2

Level 3

1.1 1.41.31.2

2.1.1 2.3.12.1.2

3.1.2.1

Time

2.3.2

Figure 1. Structure of a project in a framework at a higher level
of abstraction. See figure 2. for more details

We can define two levels of abstraction when modeling this communication. At
higher level (Figure 1.), we disregard the existence of the framework and certain
elementary connectors that are components that perform simple tasks pertaining

3

rather to the mediation of information between two or more components. This
indirection can be due to reasons such as the necessity for satisfying certain syn-
tactical requirements of component wiring. For a review on connectors see [3] and
ch. 10 in [4]. At a lower level of abstraction (Figure 2.), horizontal data flow is
“translated” into vertical flow by the help of connector components that we will
henceforth term as propagators.

Level 0

Level 1

Level 2

Level 3

Framework

1.1 1.41.31.2

2.1.1 2.3.12.1.2

3.1.2.1

Time

Connector

2.3.2

Figure 2. Structure of a project in a framework at a more con-
crete level of abstraction. The dotted line represents communi-
cation through interfaces that are discovered runtime. The data
flow between the upper layers, through the dashed line, takes
place via interfaces that are established at compile time and nec-
essarily have to be compatible. The components reach execution
state starting from left to right, bottom to top. In this case the
order is: framework, 1.1, 2.1.1, 2.1.2, 3.1.2.1, 1.2, 1.3, 2.3.1, 2.3.2,
1.4

Excluding for now more advanced flow-control such as conditional branching
and loops, the connection of components at low abstraction is tree-like since there
are only vertical calls. At the lowest level, the framework calls the component
positioned at level one. These can call others at higher level and so on. The
layering is strict in the sense that there is communication only between adjacent
levels. In the following, we will refer to components that are directly accessed by
any given component as the latter’s child components.

4 ZSOLT I. LÁZÁR AND BAZIL PÂRV

There are “framework aware” activities done at all three levels: at compile-,
link- and runtime. At compile time, there is extra coding necessary that will en-
dow the physical component, be it a library or class, with the capabilities required
by the framework. The definition of “dangling bonds” and statically set bindings
is up to the developer. The glue-code can be written manually or generated auto-
matically. At link-time, the user decides on the particular wiring to be established
between the components while the framework verifies the connections and sets
the references. At this point, a variety of connectors need to be employed and
configured, some manually by the user, some automatically by the framework. A
typical example for manual configuration of a connector would be the case of two
components that provide and require similar data but the correspondence between
the parameters in the argument list is not obvious, e.g. (float pressure, float tem-
perature) 6= (float temperature, float pressure). However, the framework can set
the propagator connectors by itself if the connected input and output ports are
compatible. Other, special connectors fall in between these two extremes. They
will require indications from the user while most of the settings are carried out by
the framework.

In this approach, there is a uniform handling of calls at all levels of the hierarchy.
As described in [2], it is necessary that runtime calls are done directly between the
different components, that is, they are not intermediated by the framework. At the
lowest level, the framework will call a component that will do all the invocations
of the second level components. Following present practices this will often be a
shell script or equivalent. In other cases it will be just an automatically generated
propagator, such as in Figure 2.

3. Wiring architectures

We can distinguish between two largely different ways of managing the access
of components to the references of their children:

(1) using a pipe&filter type of architecture wherein components posses only
the reference data that exclusively concerns them and pass to their chil-
dren the subtree of information that is necessary.

(2) using a repository type of architecture. Here a collectively accessible data
repository is consulted by each component and the necessary information
extracted.

Both architectures have beneficial and disadvantageous implications which we
will explore in the following.

3.1. A pipe&filter architecture. This alternative confers more autonomy to
the logical constituents of a project, i.e., to the functions. We can even say that
this approach favors the logical component view on the available component base.
The interfaces of all logical components will need to be extended with a new
argument through which the reference tree is communicated to the component,

5

Figure 3a. We will refer to it as paramString as it can be a simple XML string or
an equivalent representation of it such as a data aggregate (structure or object)
describing an XML node. Every function will receive a paramString containing
child information and invokes child components by sending, along other data, a
subtree of the paramString. An important disadvantage of this architecture is
that the signature of all functions will be unnaturally “distorted” because of the
paramString argument that has to be passed along. Moreover, the implementation
of the functions should be changed such that the parsing of the paramString could
be done. It is feasible to parse the paramStrings and set the references only once
during the linking of the project by storing the references in internal static variables
of each component.

3.2. A repository architecture. The suggested architecture enforces an object-
oriented approach and confers a more important role to the physical aspect of
components. The framework may create as many instances of a physical compo-
nent (Java class, C library, etc.) as many times one of its methods are used in
the project. Each instance will manage the reference data of its methods to other
“child methods” internally storing them in instance variables or global variables in
case of a C library. The most important advantage is that the logical components,
the methods, will not need to pass paramStrings to each other during runtime and
they will not need to have any implementation part dealing with paramString.
Similarly to the pipe&filter architecture, the parsing of the paramString and set-
ting the references is done only once per project. The beauty flaw that appears
in this case is the global scope of the reference variables, which is usually not
preferred by those writing computational library functions. On the other hand,
existing libraries can be much more readily adapted to the framework.

In conclusion, the repository approach has the important benefit of not requiring
modifications in the interfaces (signatures) of the logical components (functions).
Moreover, unlike the pipe&filter architecture, the implementation of these com-
ponents do not require any glue-code either. These benefits come at the cost of
child reference variables with the scope of the whole physical component. In the
pipe&filter case XML parsing has to be included into all functions. There is more
effort needed for implementing those indirections for each method, but some may
prefer to pay this price for making the child reference variable’s scope local.

Fortunately, the benefits of the two approaches can be collectd into an archi-
tecture that behaves like the pipe&filter variant during link-time and exhibits
repository architecture traits during runtime.

3.3. Mixed architecture. There are different solutions sketched in Figure 3.
Even though the last three show traits of the repository architecture they are
rather variants of the pipe&filter version. Each of them do a better or worse job
in avoiding the three main problems that characterize this latter architecture: (i)

6 ZSOLT I. LÁZÁR AND BAZIL PÂRV

the necessity of modifying the body of the function to include paramString parsing
and the initialization of children references, (ii) the modified function signature
that is used when being called and/or when calling the children, and (iii) the
indirection introduced within the body of the physical component. In Figure 3a.
the signature includes an extra paramString entry and the body of the function
is also modified. Solution b. moves the wiring into a separate function. In this
way, the actual function can retain its most natural form both from the point of
view of the interface and of the implementation. The drawback is the indirection
that is introduced. Another imperfection is the fact that outgoing calls, i.e., calls
to children will still require an outgoing interface that includes the paramString.
The third alternative eliminates this problem by offering two different entry points
at link-time and at runtime. However, this comes at the cost of an extra level
of indirection. In this setup, function calls only require the passing of actual
data. One can eliminate the second level of indirection during runtime, the way
it is depicted in, Figure 3d. The runtime entry point is called once also during
link-time and the children references are requested from the function in charge
with wiring. As a result, the wiring function can be completely avoided during
runtime. The actual business logic will be in the body of a function that receives
all necessary information, including the child references, as parameters. This has
the additional benefit of self-containment. The function is fully functional also
outside the context of the framework without confusing extra arguments. On the
other hand, there are two other functions containing glue-code of no interest for
the component developer. However, the burden of writing glue-code can be taken
over by an auxiliary applications once the interface descriptor is available.

wiring

PS IO

BL
IO CR

BL

wiring
PS IOlinktime runtime

linktime

runtime

runtime
linktimeruntime

wiring
PS IO

IO

IO CR

BL

a. b. c.

linktime

linktime

runtime

runtime

linktimeruntime

wiring
PS

IO

IO CR

BL

d.

linktime

linktime

runtime

linktime

PARENT LEVEL PARENT LEVEL PARENT LEVEL PARENT LEVEL

CHILD LEVEL CHILD LEVELCHILD LEVELCHILD LEVEL

Figure 3. Different binding solutions for the pipe&filter architecture. No-
tation: PS = paramString, IO = input/output, BL = business logic, CR =
children references

7

3.4. Putting it all together. At times, the different components will share a
small amount of data, sometimes large chunks of it. The exchange may happen
once in a while or frequently. As long as small amounts of data is flowing occa-
sionally from one component to the other any binding will do it. If the amount
is large or the communication is frequent or both, performance and storage issues
should be considered.

In Figure 1. we saw the different communication types: framework-component
and component-component. Since the framework-component connection is done
dynamically through reflection, the whole communication process imposes a much
larger overhead than direct connection between components. In C, sharing large
amounts of data is done in a straightforward manner as methods pass each other
pointers to the array they want to share. This has the benefit of avoiding data
replication. Assuming that the framework is implemented in Java, the Java Native
Interface (JNI) also passes objects by reference. However, this does not solve the
problem of large arrays. They get copied to another location in the memory and
upon leaving the native function, the original data gets updated with the modified
one. This makes JNI in its original form unfit for the job. Fortunately, since
version 1.4 of the JDK, JNI has been renewed with new features targeting exactly
the problem of performance. Previously, Java introduced a new package of IO
classes which performs much better than the original one. The new JNI makes
use of this package and provides more low level approach to data communication
between object methods. This, to some extent, solves the problem of passing large
chunks of data via the framework.

Frequent data passing occurs at higher levels in the hierarchy between compo-
nents which heavily use the specialized services of some lightweight child compo-
nents.

When connecting components, a simple syntactic check of primitive data types
is not sufficient. Data types relevant to science, such as temperature, electric
resistance, particle number, represent a certain amount of semantics. The types
preferred by the computer are: double, long, etc. One alternative for including
semantics would be the definition of classes and therein all properties of the given
quantity. This would reduce the semantic problem to a regular syntactic one. The
main problem of this approach is that a consistent organization of the inheritance
tree of all quantities used in natural sciences may not be feasible. Moreover, the
used low level languages do not offer a natural way of dealing with objects.

As for now, the connection could be done by the user tying explicitly outputs
and inputs that are semantically compatible. The syntactical validation can be
done simultaneously by the framework. There are reversed situations when two
entry points are compatible semantically but different data types are used. For
instance, electric charge is described using integer data type in one component and
floating point in another. This will require simple connector objects.

8 ZSOLT I. LÁZÁR AND BAZIL PÂRV

4. Conclusions and outlook

We have shown that there is a way to harmonize all requirements for a wiring
mechanism. The suggested architecture neither causes execution overhead, nor
requires extra implementation from the developer, nor distorts in any way the
signatures of functions when adapting them to COMODI. As a next step, one
has to look into the actual form of the glue-code that is generated so that it
could cope with tasks such as callbacks to the framework for exception and error
handling, project monitoring, and user interaction management. Achieving this
for the relevant languages in the spirit of Babel [5] is expected to be a considerable
technical challenge but none that is insurmountable.

5. Acknowledgments

This research is supported by the Netherland’s Organization for Scientific Re-
search (NWO) with grant number 048.031.003 and by the National Research Coun-
cil (CNCSIS) with grant code 37/2004. One of the authors (Zs.I.L) is especially
indebted to Prof.dr. Simon de Leeuw from the Physical Chemistry and Molecular
Thermodynamics Group at the Department of Chemical Technologies of the Tech-
nical University of Delft, The Netherlands for sharing his own and his group’s ex-
tensive experience in computer simulation. The insightful comments of dr. Jouke
Heringa are gratefully acknowledged.

References

[1] COMODI homepage, http://phys.ubbcluj.ro/
[2] Zs.I. Lázár and B. Pârv, COMODI: Guidelines for a Component Based Framework for

Scientific Computing, Studia Universitatis Babes-Bolyai, Seria Informatica.
[3] A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, J.

Darlington, Meaning and Behaviour in Grid Oriented Components, Proceedings
of the Third International Workshop on Grid Computing, Springer-Verlag (2002)
(www.lesc.ic.ac.uk/iceni/pdf/Grid2002.pdf)

[4] C. Szyperski, D. Gruntz and S. Murer, Component Software; Beyond Object Oriented Pro-

gramming, 2nd edition, Addison-Wesley (2002)
[5] Babel homepage, http://www.llnl.gov/CASC/components/babel.html

Department of Theoretical and Computational Physics, Faculty of Physics, Babeş-

Bolyai University, Str. M. Kogãlniceanu Nr. 1, RO 400084 Cluj-Napoca, Romania

E-mail address: zlazar@phys.ubbcluj.ro

Chair of Programming Languages and Methods, Faculty of Mathematics and Com-

puter Science, Babeş-Bolyai University, Str. M. Kogãlniceanu Nr. 1, RO 400084 Cluj-

Napoca, Romania

E-mail address: bparv@cs.ubbcluj.ro

